Incorporating Network Topology Improves Prediction of Protein Interaction Networks from Transcriptomic Data
نویسندگان
چکیده
The reconstruction of protein-protein interaction (PPI) networks from high-throughput experimental data is one of the most challenging problems in bioinformatics. These biological networks have specific topologies defined by the functional and evolutionary relationships between the proteins and the physical limitations imposed on proteins interacting in the three-dimensional space. In this paper, the authors propose a novel approach for the identification of potential protein-protein interactions based on the integration of known PPI network topology and transcriptomic data. The proposed method, Function Restricted Value Neighborhood (FRV-N), was used to reconstruct PPI networks using an experimental data set consisting of 170 yeast microarray profiles. The results of this analysis demonstrate that incorporating knowledge of interactome topology improves the ability of transcriptome analysis to reconstruct interaction networks with a high degree of biological relevance.
منابع مشابه
Incorporating Knowledge of Topology Improves Reconstruction of Interaction Networks from Microarray Data
Reconstruction of biological interaction networks from highthroughput experimental data is one of the most challenging problems in bioinformatics. These networks have specific topologies, whose characteristics are defined by evolutionary relationships between proteins and the physical limitations imposed on proteins interacting in three-dimensional space. In this study, a method is proposed app...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملPrediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks
Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...
متن کاملPerformance Improvement of Expanded Integrated Local Area Networks (RESEARCH NOTE)
In Local Area Networks (LAN) connected together by bridges, flow control and smooth traffic in the network is very important. However, congestion at bridges can cause intensive loss of received frames. In addition, the received frames are thrown away and have to be retransmitted by the source station, which causes more congestion and massive reduction in the overall network throughput. The netw...
متن کاملPrediction of Permanent Earthquake-Induced Deformation in Earth Dams and Embankments Using Artificial Neural Networks
This research intends to develop a method based on the Artificial Neural Network (ANN) to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJKDB
دوره 1 شماره
صفحات -
تاریخ انتشار 2010